网站首页     网上办公     教师登录     English    
公司首页
您当前的位置: 首页 >> 学术报告

Biomimetic ceramic/polymer composites for dental and orthopaedic applications

发布时间:2024-06-02    作者:        来源: 永利官网       浏览次数:     打印


报告人:Prof. Bo Su University of Bristol, United Kingdom

报告时间:2024年6月5日周三9:30-11:00

地点:三一大楼506

报告人简介:

苏波教授,英国布里斯托大学牙科学院应用临床和材料科学中心生物工程材料研究室负责人,其主要研究方向包括牙科材料的微米制造和纳米制造,牙科用生物仿生复合材料,牙科及骨科植入材料等;在Biomaterials,Dental Materials等国际一流学术刊物上发表论文百余篇,获国际专利2项,主持科研项目10余项。目前主要研究领域集中在材料制造工艺及表面工程,生物材料及组织工程材料,纳米制造技术。主要研究方向包括:生物材料(包括钛金属,陶瓷,聚合物)干细胞及微生物与表面微纳米形貌相互作用;仿生生物植入材料及组织工程材料;仿生牙科及骨科置换材料。功能材料(太阳能窗口材料;压电,铁电陆瓷及其功能复合材料和涂层在高分辨医疗成像和可调试微波元器件在微波通讯上的应用)以及生物材料(生物智能表面材料,生物仿生材料):

报告摘要:

Teeth and bones are ceramic composites with exquisitely hierarchical structures at multi-length scales andoptimal mechanical/biological properties. From the viewpoint of materials engineering, it is desirable toemulate their complex microstructure and properties from a top-down approach, Inspired by the uniauemicrostructure and properties of nacre, we use a range of fabrication techniques to produce nacre-likeceramic composites with a simple "brick and mortar’ structure from ceramic powders and flakes withdifferent shapes and compositions. Strong and tough ceramic composites with biocompatibility or bioactivityhave been produced using bi-directional freeze casting and self-assembly. Examples of some of thedeveloped nacre-like ceramiccomposites will be given and theirpotentialapplications in dentistry andorthopaedics will be discussed

Implant-associated infections pose a significant challenge in modern medicine.with theemergence ofantimicrobial resistance (A MR) new antimicrobial strategies independent of antimicrobials are attractingincreasing interests in both fundamental and translational research. In this talk, new developments of facileand up-scalable fabrication technigubased on a low-temperature alkaline etching followed by thermaannealing will be presented to produce 1D nanospike and 2D nanoflake surfaces on both 2D flat and 3Dprinted pure titanium and titanium alloy substrates. The possible formation mechanisms of nanostructures arediscussed. The antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomona!aeruginosa are characterised using bacterial metabolic and LIVE/DEAD assays. The results demonstrate thepotential of 3D printed titanium implants with nanostructured bactericidal surfaces to combat implant.associated infections, Finally, functionalisation of nanostructures with antimicrobial molecules such asenzymes and cell-binding molecules such as fibronectin demonstrates the synergy to enhance antimicrobialperformance while promoting tissue integration with Ti implants.